Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 14(2): 751-764, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322332

RESUMO

Recent progress in targeted metabolic therapy of cancer has been limited by the considerable toxicity associated with such drugs. To address this challenge, we developed a smart theranostic prodrug system that combines a fluorophore and an anticancer drug, specifically 6-diazo-5-oxo-l-norleucine (DON), using a thioketal linkage (TK). This system enables imaging, chemotherapy, photodynamic therapy, and on-demand drug release upon radiation exposure. The optimized prodrug, DON-TK-BM3, incorporating cyanine dyes as the fluorophore, displayed potent reactive oxygen species release and efficient tumor cell killing. Unlike the parent drug DON, DON-TK-BM3 exhibited no toxicity toward normal cells. Moreover, DON-TK-BM3 demonstrated high tumor accumulation and reduced side effects, including gastrointestinal toxicity, in mice. This study provides a practical strategy for designing prodrugs of metabolic inhibitors with significant toxicity stemming from their lack of tissue selectivity.

2.
Int J Genomics ; 2022: 2723264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483329

RESUMO

The extensive morbidity of colorectal cancer (CRC) and the inferior prognosis of terminal CRC urgently call for reliable prognostic biomarkers. For this, we identified 704 differentially expressed genes (DEGs) by intersecting three datasets, GSE41328, GSE37364, and GSE15960 from Gene Expression Omnibus database, to maximize the accuracy of the results. Preliminary analysis of the DEGs was then performed using online gene analysis datasets, such as DAVID, UCSC Cancer Genome Browser, CBioPortal, STRING, and UCSC Cancer Genome Browser. Cytoscape was utilized to visualize the protein perception interaction network of DEGs, and the bubble map of GO and KEGG enrichment function was demonstrated using the R package. The Molecular Complex Detection (MCODE), Biological Network Gene Oncology (BiNGO) plug-in in Cytoscape, was applied to further screen the DEGs to obtain 15 seed genes, which were IL1RN, GALNT12, ADH6, SCN7A, CXCL1, FGF18, SOX9, ACACB, PRRX1, MZB1, SLC22A3, CNNM4, LY6E, IFITM2, and GDPD3. Among them, IL1RN, ADH6, SCN7A, ACACB, MZB1, and GDPD3 exhibited statistically significant survival differences, whereas limited studies were conducted in CRC. Based on the enrichment results of the "Gene Ontology"(GO) and "Kyoto Encyclopedia of Genes and genomes "(KEGG) as well as documented findings of key genes, we further emphasized the potential of IL1RN and PRRX1 as markers of immune infiltrates in CRC and confirmed our hypothesis by compiling data from the UALCAN, Tumor Immune Estimation Resource, and TISIDB databases for these two genes. The above-mentioned genes might offer a valuable insight into the diagnosis, immunotherapeutic targets, and prognosis of CRC.

3.
Bioorg Med Chem ; 70: 116921, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863237

RESUMO

>90% of genes in the human body undergo alternative splicing (AS) after transcription, which enriches protein species and regulates protein levels. However, there is growing evidence that various genetic isoforms resulting from dysregulated alternative splicing are prevalent in various types of cancers. Dysregulated alternative splicing leads to cancer generation and maintenance of cancer properties such as proliferation differentiation, apoptosis inhibition, invasion metastasis, and angiogenesis. Serine/arginine-rich proteins and SR protein-associated kinases mediate splice site recognition and splice complex assembly during variable splicing. Based on the impact of dysregulated alternative splicing on disease onset and progression, the search for small molecule inhibitors targeting alternative splicing is imminent. In this review, we discuss the structure and specific biological functions of SR proteins and describe the regulation of SR protein function by SR protein related kinases meticulously, which are closely related to the occurrence and development of various types of cancers. On this basis, we summarize the reported small molecule inhibitors targeting SR proteins and SR protein related kinases from the perspective of medicinal chemistry. We mainly categorize small molecule inhibitors from four aspects, including targeting SR proteins, targeting Serine/arginine-rich protein-specific kinases (SRPKs), targeting Cdc2-like kinases (CLKs) and targeting dual-specificity tyrosine-regulated kinases (DYRKs), in terms of structure, inhibition target, specific mechanism of action, biological activity, and applicable diseases. With this review, we are expected to provide a timely summary of recent advances in alternative splicing regulated by kinases and a preliminary introduction to relevant small molecule inhibitors.


Assuntos
Processamento Alternativo , Serina , Arginina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Serina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
4.
Redox Biol ; 36: 101652, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32750669

RESUMO

Alterations in ROS metabolism and redox signaling are often observed in cancer cells and play a significant role in tumor development and drug resistance. However, the mechanisms by which redox alterations impact cellular sensitivity to anticancer drugs remain elusive. Here we have identified the mitochondrial isoform of thioredoxin reductase 3 (mtTXNRD3), through RT-PCR microarray screen, as a key molecule that confers drug resistance to sorafenib and other clinical anticancer agents. High expression of mtTXNRD3 is detected in drug-resistant leukemia and hepatocellular carcinoma cells associated with significant metabolic alterations manifested by low mitochondrial respiration and high glycolysis. Mechanistically, high mtTXNRD3 activity keeps the mitochondrial thioredoxin2 (Trx2) in a reduced stage that in turn stabilizes several key survival molecules including HK2, Bcl-XL, Bcl-2, and MCL-1, leading to increased cell survival and drug resistance. Pharmacological inhibition of thioredoxin reductase by auranofin effectively overcomes such drug resistance in vitro and in vivo, suggesting that targeting this redox mechanism may be a feasible strategy to treat drug-resistant cancer.


Assuntos
Apoptose , Mitocôndrias , Auranofina , Linhagem Celular Tumoral , Resistência a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Mitocôndrias/metabolismo , Oxirredução
5.
Cancer Commun (Lond) ; 39(1): 17, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947742

RESUMO

BACKGROUND: Internal tandem duplications (ITD) within the juxtamembrane domain of FMS-like tyrosine kinase 3 (FLT3) represent a poor prognostic indicator in acute myeloid leukemia (AML). Therapeutic benefits of tyrosine kinase inhibitors, such as sorafenib, are limited due to the emergence of drug resistance. While investigations have been conducted to improve the understanding of the molecular mechanisms underlying the resistance to this FLT3 inhibitor, a profile of cell functioning at the metabolite level and crosstalk between metabolic pathways has yet to be created. This study aimed to elucidate the alteration of metabolomic profile of leukemia cells resistant to the FLT3 inhibitor. METHODS: We established two sorafenib-resistant cell lines carrying FLT3/ITD mutations, namely the murine BaF3/ITD-R and the human MV4-11-R cell lines. We performed a global untargeted metabolomics and stable isotope-labeling mass spectrometry analysis to identify the metabolic alterations relevant to the therapeutic resistance. RESULTS: The resistant cells displayed fundamentally rewired metabolic profiles, characterized by a higher demand for glucose, accompanied by a reduction in glucose flux into the pentose phosphate pathway (PPP); and by an increase in oxidative stress, accompanied by an enhanced glutathione synthesis. We demonstrated that the highest scoring network of altered metabolites in resistant cells was related to nucleotide degradation. A stable isotope tracing experiment was performed and the results indicated a decrease in the quantity of glucose entering the PPP in resistant cells. Further experiment suggested that the inhibition of major enzymes in the PPP consist of glucose-6-phosphate dehydrogenase deficiency (G6PD) in the oxidative arm and transketolase (TKT) in the non-oxidative arm. In addition, we observed that chronic treatment with sorafenib resulted in an increased oxidative stress in FLT3/ITD-positive leukemia cells, which was accompanied by decreased cell proliferation and an enhanced antioxidant response. CONCLUSIONS: Our data regarding comparative metabolomics characterized a distinct metabolic and redox adaptation that may contribute to sorafenib resistance in FLT3/ITD-mutated leukemia cells.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Leucemia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Apoptose/efeitos dos fármacos , Isótopos de Carbono , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Leucemia/tratamento farmacológico , Leucemia/genética , Espectrometria de Massas , Metabolômica , Camundongos , NADP/metabolismo , Oxirredução , Via de Pentose Fosfato/efeitos dos fármacos
6.
Int J Oncol ; 53(3): 1237-1246, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29956742

RESUMO

cis-Diamminedichloroplatinum/cisplatin (CDDP) is a major drug used in cancer chemotherapy; however, the toxic side-effects and development of drug resistance represent major challenges to the clinical use of CDDP. The aim of the present study was to identify effective drug combination regimens through high-throughput drug screening that can enhance the efficacy of CDDP, and to investigate the underlying mechanisms. A cell-based high-throughput screening methodology was implemented, using a library of 1,280 Food and Drug Administration (FDA)-approved drugs, to identify clinical compounds that act synergistically with CDDP. Our study identified two compounds, namely potassium antimony tartrate and topotecan, that significantly enhanced the sensitivity of colorectal and non-small cell lung cancer cells to CDDP. The synergistic action of both compounds with CDDP was confirmed by further quantitative analyses. Topotecan is a topoisomerase-1 inhibitor that has previously been shown to enhance the clinical response and overall patient survival when combined with CDDP by a yet unclear mechanism. We demonstrated that the combination of topotecan with CDDP significantly inhibited colony formation ability and increased the apoptosis of several cancer cell lines. Mechanistic analyses revealed that topotecan enhanced CDDP-induced DNA damage and inhibited the repair of DNA strand breaks, without affecting the cellular platinum content. Overall, the findings of this study demonstrated that the use of the FDA-approved drug panel in high-throughput screening is an effective method for identifying effective therapeutic regimens that are clinically relevant, and may have high feasibility for translation into clinical practice.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/tratamento farmacológico , Tartarato de Antimônio e Potássio/farmacologia , Tartarato de Antimônio e Potássio/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Cisplatino/uso terapêutico , Sinergismo Farmacológico , Humanos , Neoplasias/patologia , Topotecan/farmacologia , Topotecan/uso terapêutico , Células Tumorais Cultivadas
7.
J Cancer ; 9(9): 1582-1591, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760796

RESUMO

Purpose: Cancer cells exhibit profound alterations in their metabolism (abnormal glucose and glutamine metabolism). Targeting cancer metabolism is a promising therapeutic strategy. Lymphoma can be classified into many different types and it is very complicated. Therefore, in this paper, we want to know whether the B cell lymphoma cells with different metabolic characteristics have distinct sensitivities to metabolic inhibitors. Methods: We classified 9 B cell lymphoma cell lines into different metabolic subtypes according to the dependency on glutamine and glucose. Then we detected the OCR, ECAR, glucose consumption and lactate production, mitochondrial content and growth rate. And we also determined the IC50 of these 9 cell lines to metabolic inhibitors. Results: According to the dependency on glutamine and glucose, we successfully classified three distinct metabolic subtypes in B cell lymphoma cell lines, one subtype was defined glutamine and glucose equally utilized subtype (GLN=Glu), whereas the other two subtypes were GLN-addicted and Glu-dependent. And these three subtypes showed striking differences in glucose and glutamine utilization, glycolysis and mitochondrial function, and proliferation rate. GLN-addicted and Glu-dependence subtypes also showed differences in cell sensitivity to inhibitors of glutamine and glycolysis metabolism, respectively. However, GLN=Glu subtype seems minimal sensitive to glycolytic and glutaminolytic inhibitors, and with high proliferation rate. Conclusions: The cells rely more on glucose/gltamine have a stronger sensitivity to glucose/glutamine depletion or glycolysis/ glutaminolysis inhibition and a lessened sensitivity to glutaminolysis/glycolysis inhibitors. To target tumor metabolism based on metabolic characteristics may provide a new therapeutic strategy for the treatment of B cell lymphoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...